Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monte Carlo simulation code for confocal 3D micro‐beam X‐ray fluorescence analysis of stratified materials

Identifieur interne : 000063 ( Main/Exploration ); précédent : 000062; suivant : 000064

Monte Carlo simulation code for confocal 3D micro‐beam X‐ray fluorescence analysis of stratified materials

Auteurs : Mateusz Czyzycki [Pologne] ; Dariusz Wegrzynek [Pologne] ; Pawel Wrobel [Pologne] ; Marek Lankosz [Pologne]

Source :

RBID : ISTEX:ED113F90B02050B97DDE4C217B51361AD20EBDCE

Abstract

Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/xrs.1300


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monte Carlo simulation code for confocal 3D micro‐beam X‐ray fluorescence analysis of stratified materials</title>
<author>
<name sortKey="Czyzycki, Mateusz" sort="Czyzycki, Mateusz" uniqKey="Czyzycki M" first="Mateusz" last="Czyzycki">Mateusz Czyzycki</name>
</author>
<author>
<name sortKey="Wegrzynek, Dariusz" sort="Wegrzynek, Dariusz" uniqKey="Wegrzynek D" first="Dariusz" last="Wegrzynek">Dariusz Wegrzynek</name>
</author>
<author>
<name sortKey="Wrobel, Pawel" sort="Wrobel, Pawel" uniqKey="Wrobel P" first="Pawel" last="Wrobel">Pawel Wrobel</name>
</author>
<author>
<name sortKey="Lankosz, Marek" sort="Lankosz, Marek" uniqKey="Lankosz M" first="Marek" last="Lankosz">Marek Lankosz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ED113F90B02050B97DDE4C217B51361AD20EBDCE</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/xrs.1300</idno>
<idno type="url">https://api.istex.fr/document/ED113F90B02050B97DDE4C217B51361AD20EBDCE/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000B28</idno>
<idno type="wicri:Area/Main/Curation">000B15</idno>
<idno type="wicri:Area/Main/Exploration">000063</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000063</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Monte Carlo simulation code for confocal 3D micro‐beam X‐ray fluorescence analysis of stratified materials</title>
<author>
<name sortKey="Czyzycki, Mateusz" sort="Czyzycki, Mateusz" uniqKey="Czyzycki M" first="Mateusz" last="Czyzycki">Mateusz Czyzycki</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL‐30059 Cracow</wicri:regionArea>
<wicri:noRegion>PL‐30059 Cracow</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wegrzynek, Dariusz" sort="Wegrzynek, Dariusz" uniqKey="Wegrzynek D" first="Dariusz" last="Wegrzynek">Dariusz Wegrzynek</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL‐30059 Cracow</wicri:regionArea>
<wicri:noRegion>PL‐30059 Cracow</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wrobel, Pawel" sort="Wrobel, Pawel" uniqKey="Wrobel P" first="Pawel" last="Wrobel">Pawel Wrobel</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL‐30059 Cracow</wicri:regionArea>
<wicri:noRegion>PL‐30059 Cracow</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lankosz, Marek" sort="Lankosz, Marek" uniqKey="Lankosz M" first="Marek" last="Lankosz">Marek Lankosz</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, PL‐30059 Cracow</wicri:regionArea>
<wicri:noRegion>PL‐30059 Cracow</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">X‐Ray Spectrometry</title>
<title level="j" type="abbrev">X‐Ray Spectrom.</title>
<idno type="ISSN">0049-8246</idno>
<idno type="eISSN">1097-4539</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-03">2011-03</date>
<biblScope unit="volume">40</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="88">88</biblScope>
<biblScope unit="page" to="95">95</biblScope>
</imprint>
<idno type="ISSN">0049-8246</idno>
</series>
<idno type="istex">ED113F90B02050B97DDE4C217B51361AD20EBDCE</idno>
<idno type="DOI">10.1002/xrs.1300</idno>
<idno type="ArticleID">XRS1300</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0049-8246</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stratified materials are of great importance for many branches of modern industry, e.g. electronics or optics and for biomedical applications. Examination of chemical composition of individual layers and determination of their thickness helps to get information on their properties and function. A confocal 3D micro X‐ray fluorescence (3D µXRF) spectroscopy is an analytical method giving the possibility to investigate 3D distribution of chemical elements in a sample with spatial resolution in the micrometer regime in a non‐destructive way. Thin foils of Ti, Cu and Au, a bulk sample of Cu and a three‐layered sandwich sample, made of two thin Fe/Ni alloy foils, separated by polypropylene, were used as test samples. A Monte Carlo (MC) simulation code for the determination of elemental concentrations and thickness of individual layers in stratified materials with the use of confocal 3D µXRF spectroscopy was developed. The X‐ray intensity profiles versus the depth below surface, obtained from 3D µXRF experiments, MC simulation and an analytical approach were compared. Correlation coefficients between experimental versus simulated, and experimental versus analytical model X‐ray profiles were calculated. The correlation coefficients were comparable for both methods and exceeded 99%. The experimental X‐ray intensity profiles were deconvoluted with iterative MC simulation and by using analytical expression. The MC method produced slightly more accurate elemental concentrations and thickness of successive layers as compared to the results of the analytical approach. This MC code is a robust tool for simulation of scanning confocal 3D µXRF experiments on stratified materials and for quantitative interpretation of experimental results. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Czyzycki, Mateusz" sort="Czyzycki, Mateusz" uniqKey="Czyzycki M" first="Mateusz" last="Czyzycki">Mateusz Czyzycki</name>
</noRegion>
<name sortKey="Lankosz, Marek" sort="Lankosz, Marek" uniqKey="Lankosz M" first="Marek" last="Lankosz">Marek Lankosz</name>
<name sortKey="Wegrzynek, Dariusz" sort="Wegrzynek, Dariusz" uniqKey="Wegrzynek D" first="Dariusz" last="Wegrzynek">Dariusz Wegrzynek</name>
<name sortKey="Wrobel, Pawel" sort="Wrobel, Pawel" uniqKey="Wrobel P" first="Pawel" last="Wrobel">Pawel Wrobel</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:ED113F90B02050B97DDE4C217B51361AD20EBDCE
   |texte=   Monte Carlo simulation code for confocal 3D micro‐beam X‐ray fluorescence analysis of stratified materials
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Feb 8 17:34:10 2021. Site generation: Mon Feb 8 17:41:23 2021